A Legendre-gauss Collocation Method for Nonlinear Delay Differential Equations
نویسندگان
چکیده
In this paper, we introduce an efficient Legendre-Gauss collocation method for solving nonlinear delay differential equations with variable delay. We analyze the convergence of the single-step and multi-domain versions of the proposed method, and show that the scheme enjoys high order accuracy and can be implemented in a stable and efficient manner. We also make numerical comparison with other methods.
منابع مشابه
A New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems
In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...
متن کاملAn Integral Collocation Approach Based on Legendre Polynomials for Solving Riccati, Logistic and Delay Differential Equations
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations usi...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an efficient numerical method for solving the nonlinear system of Volterra-Fredholm integral equations. A Legendre-spectral method based on the Legendre integration Gauss points and Lagrange interpolation is proposed to convert the nonlinear integral equations to a nonlinear system of equations where the solution leads to the values of unknown functions at collocation points.
متن کاملA New Spectral Algorithm for Time-space Fractional Partial Differential Equations with Subdiffusion and Superdiffusion
This paper reports a new spectral collocation algorithm for solving time-space fractional partial differential equations with subdiffusion and superdiffusion. In this scheme we employ the shifted Legendre Gauss-Lobatto collocation scheme and the shifted Chebyshev Gauss-Radau collocation approximations for spatial and temporal discretizations, respectively. We focus on implementing the new algor...
متن کامل